Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Nat Med ; 30(1): 279-289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200255

RESUMO

The Cancer Programme of the 100,000 Genomes Project was an initiative to provide whole-genome sequencing (WGS) for patients with cancer, evaluating opportunities for precision cancer care within the UK National Healthcare System (NHS). Genomics England, alongside NHS England, analyzed WGS data from 13,880 solid tumors spanning 33 cancer types, integrating genomic data with real-world treatment and outcome data, within a secure Research Environment. Incidence of somatic mutations in genes recommended for standard-of-care testing varied across cancer types. For instance, in glioblastoma multiforme, small variants were present in 94% of cases and copy number aberrations in at least one gene in 58% of cases, while sarcoma demonstrated the highest occurrence of actionable structural variants (13%). Homologous recombination deficiency was identified in 40% of high-grade serous ovarian cancer cases with 30% linked to pathogenic germline variants, highlighting the value of combined somatic and germline analysis. The linkage of WGS and longitudinal life course clinical data allowed the assessment of treatment outcomes for patients stratified according to pangenomic markers. Our findings demonstrate the utility of linking genomic and real-world clinical data to enable survival analysis to identify cancer genes that affect prognosis and advance our understanding of how cancer genomics impacts patient outcomes.


Assuntos
Glioblastoma , Medicina de Precisão , Humanos , Genômica , Oncogenes , Mutação em Linhagem Germinativa/genética
3.
Virchows Arch ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202567

RESUMO

Demand for large-scale tumour profiling across cancer types has increased in recent years, driven by the emergence of targeted drug therapies. Analysing alternations in plasma circulating tumour DNA (ctDNA) for cancer detection can improve survival; ctDNA testing is recommended when tumour tissue is unavailable. An online survey of molecular pathology testing was circulated by six external quality assessment members of IQN Path to registered laboratories and all IQN Path collaborative corporate members. Data from 275 laboratories across 45 countries were collected; 245 (89%) perform molecular pathology testing, including 177 (64%) which perform plasma ctDNA diagnostic service testing. The most common tests were next-generation sequencing-based (n = 113). Genes with known stratified treatment options, including KRAS (n = 97), NRAS (n = 84), and EGFR (n = 130), were common targets. The uptake of ctDNA plasma testing and plans to implement further testing demonstrates the importance of support from a well-designed EQA scheme.

4.
Prenat Diagn ; 43(4): 428-434, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36221164

RESUMO

Prenatal trio exome sequencing (ES) has become integrated into the care for pregnant women when the fetus has structural anomalies. Details regarding optimizing indications for prenatal exome sequencing, its detection rates with different categories of fetal anomalies, and principles of interpretation of pathogenicity of sequence variants are still under investigation. However, there is now growing consensus about its benefits for finding the cause of fetal structural anomalies. What is not established, is whether exome or genome sequencing (GS) has a place in the care of all pregnant women. This report is a summary of the debate on this topic at the 26th International Conference on Prenatal Diagnosis and Therapy. Both expert debaters considered the advantages and disadvantages. Advantages include the ability to diagnose serious childhood conditions without a prenatally observable phenotype, which creates the potential of early treatments. Disadvantages include difficulties with variant classification, counseling complexities, healthcare cost, and the burden on healthcare systems and families, in particular with the discovery of adult-onset disorders or variants of uncertain significance. Although both debaters weighed the balance of these conflicting arguments differently, they agreed that more research is needed to further explore the clinical utility and ethical aspects of GS for all pregnant women.


Assuntos
Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez , Feto/diagnóstico por imagem , Cuidado Pré-Natal
5.
Clin Chem ; 69(2): 160-167, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576352

RESUMO

BACKGROUND: Fetal fraction (FF) measurement is considered important for reliable noninvasive prenatal testing (NIPT). Using minimal FF threshold as a quality parameter is under debate. We evaluated the variability in reported FFs of individual samples between providers and laboratories and within a single laboratory. METHODS: Genomic quality assessment and European Molecular Genetics Quality Network provide joint proficiency testing for NIPT. We compared reported FFs across all laboratories and stratified according to test methodologies. A single sample was sequenced repeatedly and FF estimated by 2 bioinformatics methods: Veriseq2 and SeqFF. Finally, we compared FFs by Veriseq and SeqFF in 87 351 NIPT samples. RESULTS: For each proficiency test sample we observed a large variability in reported FF, SDs and CVs ranging from 1.7 to 3.6 and 17.0 to 35.8, respectively. FF measurements reported by single nucleotide polymorphism-based methods had smaller SDs (0.5 to 2.4) compared to whole genome sequencing-based methods (1.8 to 2.9). In the internal quality assessment, SDs were similar between SeqFF (SD 1.0) and Veriseq v2 (SD 0.9), but mean FF by Veriseq v2 was higher compared to SeqFF (9.0 vs 6.4, P 0.001). In patient samples, reported FFs were on average 1.12-points higher in Veriseq than in SeqFF (P 0.001). CONCLUSIONS: Current methods do not allow for a reliable and consistent FF estimation. Our data show estimated FF should be regarded as a laboratory-specific range, rather than a precise number. Applying strict universal minimum thresholds might result in unnecessary test failures and should be used with caution.


Assuntos
Teste Pré-Natal não Invasivo , Gravidez , Feminino , Humanos , Cuidado Pré-Natal , Feto , Genômica , Genoma , Diagnóstico Pré-Natal/métodos , Aneuploidia
7.
Virchows Arch ; 482(2): 347-355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36355212

RESUMO

Tumor mutational burden (TMB) has recently been approved as an agnostic biomarker for immune checkpoint inhibitors. However, methods for TMB testing have not yet been standardized. The International Quality Network for Pathology (IQNPath) organized a pilot external quality assessment (EQA) scheme for TMB testing. The aim of this program was the validation of the materials and the procedures for the EQA of this complex biomarker. Five formalin-fixed paraffin-embedded (FFPE) cell lines were selected to mimic the various TMB values observed in clinical practice. The FFPE samples were tested with the FoundationOne CDx (F1CDx) assay as the reference test and three commercially available targeted sequencing panels. Following this internal validation, the five cell lines were sent to 29 laboratories selected on the basis of a previous survey. Nineteen of the 23 laboratories that submitted results (82.6%) used targeted sequencing for TMB estimation. Only two laboratories performed whole exome sequencing (WES) and two assessed TMB by clinical exome. A high variability in the reported TMB values was observed. The variability was higher for samples with the highest TMB value according to the F1CDx test. However, good reproducibility of the TMB score was shown by laboratories using the same panel. The majority of laboratories did not indicate a TMB cut-off value for clinical interpretation. In conclusion, this pilot EQA scheme suggests that it is feasible to run such an EQA program for TMB assessment. However, the results of our pilot highlight the numerous challenges for the standardization of this test.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Reprodutibilidade dos Testes , Estudos de Viabilidade , Mutação , Biomarcadores Tumorais/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Carga Tumoral
8.
Prenat Diagn ; 43(4): 506-515, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36371615

RESUMO

OBJECTIVE: Genomics Quality Assessment has provided external quality assessments (EQAs) for preimplantation genetic testing (PGT) for 12 years for eight monogenic diseases to identify sub-optimal PGT strategies, testing and reporting of results, which can be shared with the genomics community to aid optimised standards of PGT services for couples. METHOD: The EQAs were provided in two stages to mimic end-to-end protocols. Stage 1 involved DNA feasibility testing of a couple undergoing PGT and affected proband. Participants were required to report genotyping results and outline their embryo testing strategy. Lymphoblasts were distributed for mock embryo testing for stage 2. Submitted clinical reports and haplotyping results were assessed against peer-ratified criteria. Performance was monitored to identify poor performance. RESULTS: The most common testing methodology was short tandem repeat linkage analysis (59%); however, the adoption of single nucleotide polymorphism-based platforms was observed and a move from blastomere to trophectoderm testing. There was a variation in testing strategies, assigning marker informativity and understanding test limitations, some clinically unsafe. Critical errors were reported for genotyping and interpretation. CONCLUSION: EQA provides an overview of the standard of preimplantation genetic testing-M clinical testing and identifies areas of improvement for accurate detection of high-risk embryos.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Testes Genéticos/métodos , Blastocisto , Aneuploidia
9.
Eur J Cancer ; 176: 70-77, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194905

RESUMO

BACKGROUND: Predictive biomarkers are essential for selecting the best therapeutic strategy in patients with cancer. The International Quality Network for Pathology, the European Cancer Patient Coalition and the European Federation of Pharmaceuticals Industries and Associations evaluated the access to and quality of biomarker testing across Europe. METHODS: Data sources included surveys of 141 laboratory managers and 1.665 patients, and 58 in-depth interviews with laboratory managers, physicians and payers. Four access metrics (laboratory access, test availability, test reimbursement, test order rate) and three quality metrics (quality scheme participation, laboratory accreditation, test turnaround time) were applied to rank the results. RESULTS: The access to precision medicines is higher in countries with public national reimbursement processes in place. Lack of diagnostic laboratory infrastructure, inefficient organization and/or insufficient public reimbursement narrow the access to single biomarker tests in many European countries. In countries with limited public reimbursement, pharma and patients' out of pocket were the primary funding sources for testing. Uptake of multi-biomarker next generation sequencing (NGS) is highly varied, ranging from 0% to >50%. Financial constraints, a lack of NGS testing capabilities and the failure to include NGS testing in the guidelines represent the main barriers to NGS implementation. The quality of biomarker testing is highest in Western and Northern Europe, with more than 90% of laboratories participating in quality assurance schemes. CONCLUSIONS: Our data clearly indicate the need for a call to action to ensure the clinical implementation of precision medicine in Europe.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão , Oncologia , Europa (Continente) , Biomarcadores
10.
J Mol Diagn ; 24(9): 1041-1049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835375

RESUMO

Standardization of molecular diagnostics is fundamental for effective application of genetic analyses in personalized medicine. The amount of DNA extracted from a specimen can have a significant impact on diagnostic accuracy, especially in cases where the diagnostic variant has a low concentration such as cancer. Blood and tissue samples were supplied to genetic laboratories to assess the reproducibility of extraction methodologies; DNA was extracted using participants' routine procedures and returned to the external quality assessment provider. The amount of DNA was measured by two independent analytical techniques, fluorescence intensity of intercalating dye and digital PCR; DNA quality was evaluated by DNA integrity number scores. The amount of DNA extracted varied widely between and within participants and for different blood volumes, indicating that consistent diagnostic quality is challenging even within a single test center. The median digital PCR-measured amount of DNA was on average six times higher than the intercalating dye measurements obtained in this study, indicating the possibility that the latter quantitative method may significantly underestimate the amount of DNA, thus making it not fit for purpose. Standardization of genetic diagnostic tests will require a significant improvement in the reproducibility of DNA extraction; this could be achieved if suppliers and users of DNA extraction kits validate their extraction methodology using reliable quantitative measurements or reference materials.


Assuntos
DNA , Laboratórios , DNA/genética , Humanos , Reação em Cadeia da Polimerase/métodos , Padrões de Referência , Reprodutibilidade dos Testes
11.
BMC Cancer ; 22(1): 759, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820813

RESUMO

BACKGROUND: Circulating cell free DNA (cfDNA) testing of plasma for EGFR somatic variants in lung cancer patients is being widely implemented and with any new service, external quality assessment (EQA) is required to ensure patient safety. An international consortium, International Quality Network for Pathology (IQNPath), has delivered a second round of assessment to measure the accuracy of cfDNA testing for lung cancer and the interpretation of the results. METHODS: A collaboration of five EQA provider organisations, all members of IQNPath, have delivered the assessment during 2018-19 to a total of 264 laboratories from 45 countries. Bespoke plasma reference material containing a range of EGFR mutations at varying allelic frequencies were supplied to laboratories for testing and reporting according to routine procedures. The genotyping accuracy and clinical reporting was reviewed against standardised criteria and feedback was provided to participants. RESULTS: The overall genotyping error rate in the EQA was found to be 11.1%. Low allelic frequency samples were the most challenging and were not detected by some testing methods, resulting in critical genotyping errors. This was reflected in higher false negative rates for samples with variant allele frequencies (VAF) rates less than 1.5% compared to higher frequencies. A sample with two different EGFR mutations gave inconsistent detection of both mutations. However, for one sample, where two variants were present at a VAF of less than 1% then both mutations were correctly detected in 145/263 laboratories. Reports often did not address the risk that tumour DNA may have not been tested and limitations of the methodologies provided by participants were insufficient. This was reflected in the average interpretation score for the EQA being 1.49 out of a maximum of 2. CONCLUSIONS: The variability in the standard of genotyping and reporting highlighted the need for EQA and educational guidance in this field to ensure the delivery of high-quality clinical services where testing of cfDNA is the only option for clinical management.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Receptores ErbB/genética , Frequência do Gene , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação
12.
Eur J Hum Genet ; 30(9): 1017-1021, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577938

RESUMO

In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results.


Assuntos
Exoma , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma
13.
Eur J Hum Genet ; 30(9): 1011-1016, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35361922

RESUMO

Results of clinical genomic testing must be reported in a clear, concise format to ensure they are understandable and interpretable. It is important laboratories are aware of the information which is essential to make sure the results are not open to misinterpretation. As genomic testing has continued to evolve over the past decade, the European Society of Human Genetics (ESHG) recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic) published in 2014 have been reviewed and updated to provide the genomic community with guidance on reporting unambiguous results.


Assuntos
Testes Genéticos , Genômica , Humanos
14.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121140

RESUMO

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Sensibilidade e Especificidade
15.
Lancet Neurol ; 21(3): 234-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182509

RESUMO

BACKGROUND: Repeat expansion disorders affect about 1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in underdiagnosis of people who have atypical clinical presentations, especially in paediatric patients without a previous positive family history. Whole genome sequencing is increasingly used as a first-line test for other rare genetic disorders, and we aimed to assess its performance in the diagnosis of patients with neurological repeat expansion disorders. METHODS: We retrospectively assessed the diagnostic accuracy of whole genome sequencing to detect the most common repeat expansion loci associated with neurological outcomes (AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, FMR1, FXN, HTT, and TBP) using samples obtained within the National Health Service in England from patients who were suspected of having neurological disorders; previous PCR test results were used as the reference standard. The clinical accuracy of whole genome sequencing to detect repeat expansions was prospectively examined in previously genetically tested and undiagnosed patients recruited in 2013-17 to the 100 000 Genomes Project in the UK, who were suspected of having a genetic neurological disorder (familial or early-onset forms of ataxia, neuropathy, spastic paraplegia, dementia, motor neuron disease, parkinsonian movement disorders, intellectual disability, or neuromuscular disorders). If a repeat expansion call was made using whole genome sequencing, PCR was used to confirm the result. FINDINGS: The diagnostic accuracy of whole genome sequencing to detect repeat expansions was evaluated against 793 PCR tests previously performed within the NHS from 404 patients. Whole genome sequencing correctly classified 215 of 221 expanded alleles and 1316 of 1321 non-expanded alleles, showing 97·3% sensitivity (95% CI 94·2-99·0) and 99·6% specificity (99·1-99·9) across the 13 disease-associated loci when compared with PCR test results. In samples from 11 631 patients in the 100 000 Genomes Project, whole genome sequencing identified 81 repeat expansions, which were also tested by PCR: 68 were confirmed as repeat expansions in the full pathogenic range, 11 were non-pathogenic intermediate expansions or premutations, and two were non-expanded repeats (16% false discovery rate). INTERPRETATION: In our study, whole genome sequencing for the detection of repeat expansions showed high sensitivity and specificity, and it led to identification of neurological repeat expansion disorders in previously undiagnosed patients. These findings support implementation of whole genome sequencing in clinical laboratories for diagnosis of patients who have a neurological presentation consistent with a repeat expansion disorder. FUNDING: Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, and Illumina.


Assuntos
Expansão das Repetições de DNA , Medicina Estatal , Criança , Proteína do X Frágil de Retardo Mental/genética , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Reino Unido , Sequenciamento Completo do Genoma/métodos
16.
Genet Med ; 23(12): 2360-2368, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34429528

RESUMO

PURPOSE: Genome sequencing (GS) for diagnosis of rare genetic disease is being introduced into the clinic, but the complexity of the data poses challenges for developing pipelines with high diagnostic sensitivity. We evaluated the performance of the Genomics England 100,000 Genomes Project (100kGP) panel-based pipelines, using craniosynostosis as a test disease. METHODS: GS data from 114 probands with craniosynostosis and their relatives (314 samples), negative on routine genetic testing, were scrutinized by a specialized research team, and diagnoses compared with those made by 100kGP. RESULTS: Sixteen likely pathogenic/pathogenic variants were identified by 100kGP. Eighteen additional likely pathogenic/pathogenic variants were identified by the research team, indicating that for craniosynostosis, 100kGP panels had a diagnostic sensitivity of only 47%. Measures that could have augmented diagnoses were improved calling of existing panel genes (+18% sensitivity), review of updated panels (+12%), comprehensive analysis of de novo small variants (+29%), and copy-number/structural variants (+9%). Recent NHS England recommendations that partially incorporate these measures should achieve 85% overall sensitivity (+38%). CONCLUSION: GS identified likely pathogenic/pathogenic variants in 29.8% of previously undiagnosed patients with craniosynostosis. This demonstrates the value of research analysis and the importance of continually improving algorithms to maximize the potential of clinical GS.


Assuntos
Craniossinostoses , Testes Genéticos , Sequência de Bases , Mapeamento Cromossômico , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Humanos , Doenças Raras/genética
17.
Am J Hum Genet ; 108(9): 1551-1557, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34329581

RESUMO

Clinical validity assessments of gene-disease associations underpin analysis and reporting in diagnostic genomics, and yet wide variability exists in practice, particularly in use of these assessments for virtual gene panel design and maintenance. Harmonization efforts are hampered by the lack of agreed terminology, agreed gene curation standards, and platforms that can be used to identify and resolve discrepancies at scale. We undertook a systematic comparison of the content of 80 virtual gene panels used in two healthcare systems by multiple diagnostic providers in the United Kingdom and Australia. The process was enabled by a shared curation platform, PanelApp, and resulted in the identification and review of 2,144 discordant gene ratings, demonstrating the utility of sharing structured gene-disease validity assessments and collaborative discordance resolution in establishing national and international consensus.


Assuntos
Consenso , Curadoria de Dados/normas , Doenças Genéticas Inatas/genética , Genômica/normas , Anotação de Sequência Molecular/normas , Austrália , Biomarcadores/metabolismo , Curadoria de Dados/métodos , Atenção à Saúde , Expressão Gênica , Ontologia Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Genômica/métodos , Humanos , Aplicativos Móveis/provisão & distribuição , Terminologia como Assunto , Reino Unido
18.
Virchows Arch ; 479(6): 1067-1072, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33856555

RESUMO

While tumour mutation burden (TMB) is emerging as a possible biomarker for immune-checkpoint inhibitors (ICI), methods for testing have not been standardised as yet. In April 2019, the International Quality Network for Pathology (IQN Path) launched a survey to assess the current practice of TMB testing. Of the 127 laboratories that replied, 69 (54.3%) had already introduced TMB analysis for research purposes and/or clinical applications. Fifty laboratories (72.5%) used targeted sequencing, although a number of different panels were employed. Most laboratories tested formalin-fixed paraffin-embedded material (94.2%), while 18/69 (26%) tested also cell-free DNA. Fifty-five laboratories used both single nucleotide variants and indels for TMB calculation; 20 centers included only non-synonymous variants. In conclusion, the data from this survey indicate that multiple global laboratories were capable of rapidly introducing routine clinical TMB testing. However, the variability of testing methods raises concerns about the reproducibility of results among centers.


Assuntos
Biomarcadores Tumorais/genética , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Austrália , Canadá , Tomada de Decisão Clínica , Europa (Continente) , Pesquisas sobre Atenção à Saúde , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Ensaio de Proficiência Laboratorial , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Variações Dependentes do Observador , Medicina de Precisão , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
19.
Clin Microbiol Infect ; 27(9): 1348.e1-1348.e7, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33901668

RESUMO

OBJECTIVES: Rapid, high throughput diagnostics are a valuable tool, allowing the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations so as to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as quantitative RT-PCR (RT-qPCR), particularly throughout the first months of the coronavirus disease 2019 pandemic. We investigated the use of LamPORE, where loop-mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. METHODS: In an asymptomatic prospective cohort, for 3 weeks in September 2020, health-care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza-like illness from March 2020 to June 2020 were similarly tested from nasopharyngeal swabs. RESULTS: In the asymptomatic cohort a total of 1200 participants supplied 23 427 samples (3966 swab, 19 461 saliva) over a 3-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% (decreasing to approximately 98% when clustered estimation was used) in both swab and saliva asymptomatic samples when compared with the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. CONCLUSIONS: LamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.


Assuntos
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Limite de Detecção , Sequenciamento por Nanoporos , Nasofaringe/virologia , Poliproteínas/genética , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2/genética , Saliva/virologia , Sensibilidade e Especificidade , Proteínas Virais/genética
20.
Eur J Hum Genet ; 29(3): 365-377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33223530

RESUMO

If genome sequencing is performed in health care, in theory the opportunity arises to take a further look at the data: opportunistic genomic screening (OGS). The European Society of Human Genetics (ESHG) in 2013 recommended that genome analysis should be restricted to the original health problem at least for the time being. Other organizations have argued that 'actionable' genetic variants should or could be reported (including American College of Medical Genetics and Genomics, French Society of Predictive and Personalized Medicine, Genomics England). They argue that the opportunity should be used to routinely and systematically look for secondary findings-so-called opportunistic screening. From a normative perspective, the distinguishing characteristic of screening is not so much its context (whether public health or health care), but the lack of an indication for having this specific test or investigation in those to whom screening is offered. Screening entails a more precarious benefits-to-risks balance. The ESHG continues to recommend a cautious approach to opportunistic screening. Proportionality and autonomy must be guaranteed, and in collectively funded health-care systems the potential benefits must be balanced against health care expenditures. With regard to genome sequencing in pediatrics, ESHG argues that it is premature to look for later-onset conditions in children. Counseling should be offered and informed consent is and should be a central ethical norm. Depending on developing evidence on penetrance, actionability, and available resources, OGS pilots may be justified to generate data for a future, informed, comparative analysis of OGS and its main alternatives, such as cascade testing.


Assuntos
Testes Genéticos/normas , Genética Humana/normas , Guias de Prática Clínica como Assunto , Sociedades Médicas/normas , Europa (Continente) , Testes Genéticos/ética , Genética Humana/ética , Genética Humana/organização & administração , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...